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I M P R O V E D  M O D E L  OF T H E  G R I F F I T H  C R A C K  

E. E. D e r y u g i n  and G. V.  Lasko UDC 620.172.21:569.3 

The plane-stress state of a cracked continuous medium in tension is determined using relaxation 
elements. The stress state is analyzed at the tip of a crack surrounded by a plastically deformed 
material as a band of localized plastic deformation (LPD) shaped like an elongated ellipse. 
The plastic deformation considerably decreases the stress concentration at the crack tip. As 
the localization of the plastic deformation increases, the stresses at the crack sides decrease to 
zero. The decrease in stresses at the tip is accompanied by an increase in the concentration and 
gradients of the stresses at the end of the LPD band. Here the region of perturbation of the 
stress field is comparable with the width of the band. 

I n t r o d u c t i o n .  The principles and criteria of linear fracture mechanics [1-5] usually underlie the 
strength and durability calculations for the structural members. The criteria are calculated with allowance 
for the properties of the classical model of the Griffith crack despite its having significant two drawbacks. 
The first is the presence of a singular point at the end of a cut, an unbounded increase in the stress being 
observed as this point is approached. This explains the fact that the physical notion of the coefficient of stress 
concentration at the crack tip is not used in fracture mechanics, and the coefficient of stress intensity in the 
neighborhood of the singular point is used as the characteristic of the inhomogeneous stress field. To formulate 
the criterion for crack propagation, Griffith assumed that the formation of the crack surface is connected with 
the expenditure of energy. As the crack lengthens, the released elastic energy should be higher than the energy 
expended for the formation of the new surfaces. The additional energy 7 introduced by Griffith cannot be 
calculated from the elasticity equations for a solid body with a cut, which may be considered as the second 
drawback of the Griffith theory. 

The assnmptions of the nonlinear behavior of a material at the crack ends allowed one to employ a 
number of known models for calculations [2-6]. However, their application is restricted. They hold true in the 
case where the plastic-deformation zone is very small compared with the length of the crack. The description 
of the stress state near the crack tip with an extended plastic-deformation zone involves great mathematical 
and computing difficulties [2-5]. 

This work suggests an improved model of the Griffith crack that is free from these drawbacks owing 
to the assumption that the effective moduli of elasticity in the immediate proximity of the real surface of a 
solid body differ from those in the volume of the material and owing to taking into account the relaxation 
effects (the stress decrease) in the plastic-deformation zone. This allowed us to characterize the crack in a 
solid body as a defect with the internal-stress field and to relate the formation of the free surface with work 
of the external forces. 

The method of relaxation elements was used to construct the model of a crack with the site of plastic 
deformation in a continuous medium and to calculate the stress state of this medium [7-9]. For the plane- 
stress state, analytical expressions were obtained which are applicable in engineering calculations of the stress 
concentration and in the formulation of the fracture criteria for cracked materials containing the plastic- 
deformation zones. 
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1. Tak ing  in to  A c c o u n t  t he  Phys ica l  W i d t h  of  t h e  Crack  Surface .  We shall consider an 
opening crack oriented perpendicularly to the axis of tension in the form of a cut in an isotropic continuous 
medium. We present the free surface of the cut as a layer of gradient material within which the Young modulus 
continuously varies from zero to E0 in the volume of the material. The thickness of the surface layer is called the 
physical width of the crack surface. This thickness should be much less than the length of the crack, because 
the number of links between the atoms and, hence, the forces of interaction between them in an actual surface 
layer weaken toward the external atomic layer [10]. One can model this situation by representing the surface 
as a thin layer of a continuous material in the neighborhood of which the elastic moduli continuously tend to 
zero as the surface frontier is approached. 

It is known that  the decrease in the elastic modulus in the local continuous-medium region under 
external loading decreases the stress in this region and increases the stress concentration outside this region 
in the neighborhood of its boundary. If there is a local region shaped like an ellipse with Young modulus E0 
and with center at the origin of the Cartesian coordinate system in an elastically deformable plate with Young 
modulus El,  it is possible to show that inside the ellipse, in the tension by the force a along its minor semi-axis 
b directed along the y axis the stress is a - An, where Aa  = a(Eo - E1)b/(2aE1 + bEo), E0 > El, and a is the 
other semi-axis of the ellipse. Because of the stress decrease by An, the additional variation in the shape of the 
ellipse is determined by the strain tensor with the components [7-9] Aez = A a / E o ,  Aey = (1 + 2 a / b ) A a / E o ,  
and Arxy = 0. Specifying E1 or Aa completely determines the stress-strain state of the plane subjected to 
the stress a. The Young modulus E0 is considered specified in the volume of the material. 

There is an inhomogeneous stress field outside the elliptical region. The stress-tensor components along 
the z axis are determined by the relations 

= Ao- ( ( z2  - a2 

2b/a) 1 = + b 2  + o- , ,  = 0. 

We note that  without the homogeneous stress field a - - A n  (see the expression for ay) Eqs. (1.1) describe 
the stress state of the plate with an elliptical notch under the action of the external stress An. We arrive at 
the same result in considering a region filled with a material with the Young modulus tending to zero instead 
of an orifice (El --* 0). Here we have A a  --* a, i.e., the complete relaxation of the stresses is observed. Thus, 
the decrease in the modulus causes the effect of stress relaxation (the stress decrease) and the appearance 
of an inhomogeneous stress field around the relaxation region. The influence of a smooth variation in the 
modulus of elasticity in the layer before the boundary of the elliptical contour on the stress state of the plane 
is taken into account by the method of relaxation elements [7-9]. 

We present the crack as an elliptical hollow with a layer over the contour within which the modulus 
of elasticity E continuously increases from 0 to E0 in the volume of the material. Figure 1 shows the ellipse- 
shaped relaxation elements (RE) inserted into each other. It is assumed that outside this layer the matrix is 
homogeneous, isotropic, and is elastically deformed at the tensile stress a along the y axis. For definiteness, it 
is necessary to describe the geometrical parameters of each RE from the family. In addition, inside each RE 
from this family one needs to specify the magnitude of the elementary decrease in the stress (the elementary 
tensor of relaxation) such that  the total decrease in the stresses of all the RE eliminates all the stresses in the 
internal region (the hollow) if the internal stress is a. 

We accomplish this as follows. We assume that all ellipses are center-sharing at the coordinate origin 
and have semi-axes coinciding with the axes of the coordinates. The lengths of the semi-axes (Fig. 1) are 
found by the equalities a(t)  = ao -4- h(1 - t) and b(t) = bo -t- h(1 - t), where h is the thickness of the layer, 
which is the same along the x and y axes; t is the variable varying from 0 to 1. The variation of the layer 
thickness in other directions is ignored. The semi-axes are maximum at t = 0. Therefore, the increase in t 
corresponds to a subsequent transition from the external ellipse to the boundary of the hollow. The value of 
t corresponds to a definite contour of the family. As b0 --* 0, the hollow becomes a crack. We assume that for 
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the crack ao >> h, the point on the x axis corresponds to the RE contour for 

t = 1 - ( z  - a o ) l h .  (1.2) 

The magnitude of the elementary-relaxation tensor for each RE is expressed as a function of the 
variable t: 

da  r "- (fl  + 1)atB dt,  - 1  ~</3 < oo. (1.3) 

It is seen that the parameter/3 governs the relaxation in the continuous contour-to-contour transition. 
The larger the magnitude of t, the greater the elementary-relaxation tensor. The principle of superposition is 
true for the RE, because the elementary fields (solutions) for the stresses in the approximation of the linear 
theory of elasticity are summed. The normalization coefficient ~ + 1 ensures the absence of stresses inside 
the hollow, since in the integration of d a  r from 0 to 1 it yields a decrease in the stress equal to the stress a 
applied from outside. In the integration of da  r from 0 to t = 1 - ( z  - a o ) / h ,  the stress decrease inside the 
chosen layer is the larger the closer the point to the hollow. The parameter fl governs the rate of variation of 
this quantity: the larger the ~, the more rapidly the stress relaxes at the boundary of the hollow. Thus we 
have modeled the corresponding decrease in the effective moduli of elasticity toward the cut boundary. 

Since there is an unambiguous relationship between the elementary-relaxation tensor inside the RE and 
the elementary stress field outside the RE [see F-xts. (1.1)], specifying the magnitude of the relaxation in the 
local regions by means of the RE distribution automatically determines the resulting inhomogeneous stress 
field in the entire plane, including the layer. In the adopted coordinate system (Fig. 1), for the component ay 
of the elementary stress field of an arbitrary RE along the z axis, according to conditions (1.2) and (1.3) one 
can write the expression 

[h2( 1. : 0 2 x h2(1 - t)~z ] 
d a ,  = a(j3 + 1)t~[ a~ 2 + ~ + (-~-5-_-a02~ j dt. (1.4) 

Integrating expression (1.4) over the variable t and taking into account that the integration limits are 
taken from 0 to 1 outside the layer and from t up to 1 at the points entering the layer, where t depends on 
the coordinate of the point, according to the definition (1.2) we obtain the equation for the profile of the 
component ay along the x axis: 

av 2h2 (~o  x ) x A ( x ) ,  x >~ ao + h, 
-~- "- (/3 + 2)(13 + 3) + (x 2 --a2)3/2' + ~ f ~ _  ao 2 
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and 

if a0 ~< x ~< a0 + h. 
Figure 2 shows the change in the distribution of the stress ay in the neighborhood of the crack, 

according to Eq. (1.5) for/9 = 1.5 k and ao/h = 1003. It is clear that,  in contrast to the Griffith solution (the 
curve for k = 5), there is no singularity at the end of the crack in this case. In the near-surface layer the 
stress continuously increases, beginning from zero at the end of the cut, passes through the maximum, and 
decreases, asymptoticMly approaching the magnitude of the external stress a. Outside the layer the qualitative 
and quantitative differences of the curves almost disappear. A decrease in the parameter/9 increases the stress 
concentration and shifts the maximum to the boundary of the hollow. As/9 --* 0% we obtain the Griffith 
curve in the limit. This effect occurs when the physical width of the surface h decreases. 

The advantages of this variant are evident, because it produces the singular solution only as a particular 
case where the thickness of the near-surface layer tends to zero or the parameter/9 tends to infinity. Taking 
into account the thickness of the surface in the form of a lamina allows one to analyze the fracture criteria 
for brittle materials without additional assumptions. 

2. C r i t e r i a  for C r a c k  P r o p a g a t i o n  in Br i t t l e  Mate r ia l s .  Energy Criterion of Fracture. The 
conditions for brittle fracture can be formulated depending on the formulation of the problem. The energy 
criterion follows from the condition that the energy spent by the external forces to lengthen the crack does 
not exceed the energy of formation of the free surface of the crack. In this case, the crack propagates owing to 
the decrease in the elastic energy of the solid body. The energy of RE formation can he written in the form 

a0 t B 
dA = 0.5,g(t) dzy do'" = a'a2[ao + h(1 - t)] h (1 - t)(/9 + 1)2 (3 + 2 h(l~ - t))t 'a dt ~-B-o'o dr, (2.1) 

where S(t) = w[a0 + h(1 - t)]h(1 - t) is the area of the ellipse (the relaxation region) of a given RE; 

d~ - a(/9 +Eo 1) (3 + 2 ~ )  t/j dt 

is the strain caused by relaxation, which is the same at all the points of the region of RE relaxation, and E0 
is the Young modulus. 

We obtain the total energy spent for the formation of a crack with half-length a0 by integrating 
expressions (2.1) twice over t from 0 to 1. For h << a0, we have A = fa2a~/E. The energy spent for the 
formation of the free surface of the crack is A0 = 4a07. The release of the elastic energy equals AA = A - A0. 

If the lengthening of the crack is accompanied by the release of the elastic energy, the condition 
dAA/da >I 0 is satisfied. The critical fracture stress (the initiation of a crack) is found from 

act .~. r (2.2) 

and it coincides with the critical stress of the crack initiation according to Griffith-Orowan [2-5, 11]. 
Strength Criterion of Fracture. Our model makes it possible to formulate the strength criterion for the 

initiation of a crack as follows: a body with a crack of definite length fractures at a certain critical stress act if 
the stress concentration in the neighborhood of the crack exceeds the value of the theoretical tensile strength, 
i.e., under the condition that  % m =  = acrkI = atheor, where k r is the concentration coefficient. According to 
Eq. (1.5), for a crack of a given length the stress concentration is determined by the parameters h and/9. We 
mentioned above that  the increase in/9 decreases the physical width of the surface h (see Fig. 2). Hence, it 
is meaningful to fix a definite value of the parameter/9 for a specified width h of the physical surface. For 
/9 = 0, the gradient of the Young modulus varies jumpwise at the boundary of contact between the surface 
layer and the elastically deformable matrix. When/9 > 1, the Young modulus varies smoothly in the range 
of the physical width of the surface h. However, the effective width of the surface markedly decreases in this 
case. Therefore, we take/9 = 1, which satisfies the condition of a smooth increase in the Young modulus in 
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Fig. 3 

the range of h and is convenient to simplify the calculation of ay m a x .  For a0 >> h and ~ = 1, the distribution 
of the stress cry along the x axis is expected to be determined by the formula 

l'ao(  - ao) (2 

Taking the derivative cgay/cgx and equating it to zero, we find that the maximum of the stress Cry 
corresponds to (z - ao)/h = 2/3. Substituting this value in Eq. (2.3), with allowance for Crcr we obtain the 
theoretical value of the fracture strength of the material for h = 3d: 

Crth o, 0.355 

Here 6 is the interatorr~c distance. For example, for aluminum, at 6 = 4- 10 -1~ m [11], E - 72 GPa [121, 
and ~ = 1.2 J / m  2 [10, p. 14], we have Crtheor = 5.21 GPa ~ E/13, which lies in the range of quantities 
predicted by known theoretical models [4-6, 13]. It is of  interest to note that  the values are quite reasonable 
for the physical thickness of the surface in the range of several interatomic distances despite the fact that 
our explicitly atomic structure of the surface layer has the property of a continuous medium with a variable 
Young modulus. 

Thus, the strength and energy criteria axe adequate in this model. 
Internal-Stress Field o / a  Crack. We assume that the free surface of a crack is preserved after the 

external loading is removed. This means that  there will be a definite internal-stress field in the volume of a 
solid body whose elastic energy is equal to work of the external forces spent for the formation of the surface 
layer. This field is due to the irreversibility of additional displacements in the near-surface layer at load. 

It is evident that  during unloading the free surfaces of the crack begin to come in contact along the 
boundary of the cut. The contact area gradually increases, beginning from the crack tip. It follows from the 
common considerations that  after the complete unloading the compressive stress will act along the line of 
contact, which increases toward the crack tip. In the neighborhood of the tip, the material is exposed to the 
tensile force close to the theoretical strength and the corresponding strains. If these strains in the layer are 
considered irreversible, it follows from the equilibrium condition for the forces that  upon unloading almost 
the same compressive stress will occur in this region. 

If the displacements of the points of the surface layer, called a gradient of the effective moduli of 
elasticity, axe irreversible, the internal-stress field of the crack will be adequate to the stress for a rectilinear 
band of localized plastic deformation [7, 8] with a distribution satisfying the smooth-change condition in the 
effective Young modulus from zero on the band axes to the value of E0 at the boundary with the elastically 
deformable matrix. Figure 3 shows the spatial distribution of the internal stresses Cry of this field for fl = 1. 
It is seen that the field is unperturbed only at the crack tip in the local area whose width is comparable with 
the width of the surface layer. For ay, in the coordinate system with origin at the crack tip we obtain the 
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expression 

l h ( x - h z ) z B + l [ 1  + h2z2 +4y2 - 4a2y2 ] dz "4" o'(fl 1) [A ( z z  ~ 1) f 0.5a(~ o'y + 1) dz. 
A o 

In the neighborhood of the crack tip inside the circular region, i.e., under the condition that (x - h) 2 + 
y2 ~< h 2, we have A = (x 2 + y2)/2xh. Outside this region, only the first integral with A = 0 acts. 

The distribution of the stresses ay along the axis of a semi-infinite crack is shown in Fig. 4. The material 
undergoes a compressive stress along the geometrical line of the crack, and its maximum is at the end of the 
cut. With distance from the end, this stress decreases rapidly and asymptotically tends to zero. This situation 
is close to the case where the length of the crack considerably exceeds the thickness of the surface layer. The 
microcracks in brittle materials, which are observed with an optical microscope, satisfy this condition. Since 
the stresses far from the tip of the crack are close to zero, the crack opening begins almost from the onset 
of loading. At a definite degree of opening, the stress concentration in the neighborhood of the tip becomes 
critical. Hence, the moment of crack initiation can also be characterized by a geometrical criterion, namely, 
the critical magnitude of the crack opening. It is evident that this criterion is unambiguously related to the 
energy (strength) criterion for crack propagation. 

We shall present a more realistic situation from the physical viewpoint when the variation in the 
shape of the surface layer is reversible. In this situation, the intense compressive stresses upon unloading 
are expected to aim to close the crack according to the mechanism of ~lightning." Experiments show that 
some microcracks in brittle materials are closed upon unloading [14]. For the crack to remain open in a 
solid body after unloading, the contour of the contact surfaces should be changed irreversibly. Generally, any 
local fracture of the material is preceded by plastic deformation of definite degree. Experience shows that, in 
practice, there are no absolutely brittle materials. Taking into account the plastic deformation considerably 
changes the stress distribution in the neighborhood of the crack. We shall analyze this effect. 

3. Effect  of t h e  P las t ic  Defo rmat ion  on the  Stress  Concen t r a t i on  in a Cracked  Solid. We 
consider a simple case where the crack is surrounded by a plastically deformable material of elliptical shape. It 
is convenient to construct a site with a smooth field of plastic deformation by the method of relaxation elements 
[7-9]. Here the geometrical dimensions of the plastic region and the character of the plastic-deformation 
distribution in it is easily varied. The plastic-deformation site around the crack is shown schematically in Fig. 
5. The plastic-deformation distribution ensuring the complete relaxation (the disappearance) of the stress 
inside the elliptical region bounded by the crack contour is first constructed with allowance for the physical 
width of the surface for the external stress al (the bold curve in Fig. 5). The corresponding stress field is 
found for this distribution of the ER. Then the solution for the crack (1.5) is imposed on this field with the 
external stress 0"2 so that the contour of the surface layer of the crack coincides with the boundary of the 
complete-relaxation region in the plastic-deformation site. As a result, we find the stress field of the crack 
with a plastic zone at the external stress a = al + as. 
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The field of the plastic-deformation site is constructed using the RE similarly as was done for the crack 
with a near-surface layer. We specify the semi-axes of the RE connected to the plastic-deformation field: these 
axe the semi-axes l = a0 + h + (10 - a0 - h)(1 - t) along the x axis and b = h + (b0 - h)(1 - t) along the y axis. 
As before, a0 + h is the length of the crack with allowance for the physical width h, l0 is the length of the 
plastic zone along the x axis, and b0 is the width of the plastic zone along the axis of tension. Inside each RE, 
we specify the magnitude of the elementary-relaxation tensor da r = al(1 - t) ~ d~ for the RE in the unhatched 
region of the plastic-deformation site and the magnitude da r = a l l  ~ dt for other RE who~e contours enter 
the near-boundary region of this site of width s in the direction of the x axis (see Fig. 5). An arbitrary RE 
in a given distribution creates an elementary stress field outside its relaxation region. According to [8], the 
distribution along the z axis of the component day of this field is described by the expression 

i [ b2 xCZ-2b) 
da, -- T ~  ~ + (l - b)c -I- c.3 j , 

where c = ~ z  z - -  (/2 _ b2)(1 _ Q2. It is connected with the existence of a homogeneous elementary field of 
plastic deformation de~ = dar(1 + 2lib) inside the relaxation region of this RE. 

For 10 :~ a0 and b0 >> h, one can assume that the ratio of the semi-axes of all the RE is the same, i.e., 
it equals the ratio of the semi-axes of the plastic-deformation site lo/bo. For the component ay of the stress 
fields in this plastic-deformation site, the final result is as follows: 

Here 

where 

amyal = F ( z ) =  t ~,/~'~- s )  + F2(z) . (3.1) 

b~A "r+l b2zlo(.y + 1 ) [  

= ( I .  - + l .  - 
1 - A  

c2 

1, z t> 1o - s, 
A =  x/ lo ,  z <<. l o -  s; 

b2[(s / lo ) ' r+ ' -B  "r+l] + b~x lo (7+ l )  [ " ;~ (. /_0:2b0 (1 c2t)2)dt]  ; F2(z) 
(lo -- bo) 2 To-- bo t JB c \ ( to - bo)b 2 

B = ~ 0, z />  10, 
L 1 -  z/lo,  x ~ lo. 

For ~, >/1, b0 >> h, and l0 :>> a0 q- h, i.e., when the dimensions of the plastic zone considerably exceed 
the size of the crack, the stresses are almost zero in the neighborhood of the center of the site. Therefore, one 
can add the stress field of the crack (1.5) to this solution if the external stress is 0"2. 
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The maximum plastic deformation near the crack is equal to e~ = al (1 +21o/bo)/E, i.e., it is determined 
by the quantity a]. Since the external stress is a = al +a2, the increase in al for the given stress a automatically 
decreases the stress near the crack. 

Thus, after appropriate substitutions the full solution is written as the sum a~ = alF + a2H, where 
the function F is determined by expression (3.1), and H by expression (1.5) for the crack. 

Figure 6 shows the distribution diagrams for the stress ay along the x axis in a solid body with a crack 
in the plastic zone for ay/a = O, 0.2, 0.5, 0.8, and 1 (curves 1-5, respectively). The distribution of the stress ay 
at the crack tip is shown on a large scale. As expected, the accumulation of the plastic deformation decreases 
the stress concentration at the crack tip. The calculations show that, simultaneously, the stress concentration 
increases at the end of the plastic zone. However, the maximum stress concentration in the plastic-deformation 
zone is much less than the maximum stress concentration at the crack tip without the plastic-deformation 
zone. In our example, it differs by more than an order of magnitude. The increase in the concentration at the 
crack tip remains significant up to the high degrees of plastic deformation (curve 4). It is noteworthy that 
the gradients of the stress field at the tip are several orders of magnitude greater than those at the end of the 
plastic zone. These features clearly demonstrate the differences between the microconcentrator at the crack 
tip and the concentrator of a higher scale level, arising in the plastic-deformation zone. 

The lengthening of the plastic zone does not affect the stress concentration at the crack tip, with other 
things being equal. However, the concentration at the end of the plastic-deformation zone depends on the 
change of the parameters 7 and s in Eqs. (3.1). Since this concerns the property of the plastic-deformation 
zone rather than the crack, we omitted this dependence. 

In concluding, it is noteworthy that the situation can arise where the plastic deformation completely 
suppresses the concentrator at the crack tip (curve 5 in Fig. 6). 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
00902). 
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